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[1] The objective of this work is to discuss solute transport phenomena in fractured
porous media, where the macroscopic transport of contaminants in the highly permeable
inter-connected fractures can be strongly affected by solute exchange with the porous
rock matrix. We are interested in a wide range of rock types, with matrix hydraulic
conductivities varying from almost impermeable (e.g., granites) to somewhat permeable
(e.g., porous sandstones). In the first case, molecular diffusion is the only transport
process causing the transfer of contaminants between the fractures and the matrix blocks.
In the second case, additional solute transfer occurs as a result of a combination of
advective and dispersive transport mechanisms, with considerable impact on the
macroscopic transport behavior. We start our study by conducting numerical tracer
experiments employing a discrete (microscopic) representation of fractures and matrix.
Using the discrete simulations as a surrogate for the ‘‘correct’’ transport behavior, we then
evaluate the accuracy of macroscopic (continuum) approaches in comparison with the
discrete results. However, instead of using dual-continuum models, which are quite often
used to account for this type of heterogeneity, we develop a macroscopic model based
on the Continuous Time Random Walk (CTRW) framework, which characterizes the
interaction between the fractured and porous rock domains by using a probability
distribution function of residence times. A parametric study of how CTRW parameters
evolve is presented, describing transport as a function of the hydraulic conductivity ratio
between fractured and porous domains.
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1. Introduction

[2] The internal heterogeneity of fractured porous forma-
tions is a significant obstacle to the prediction of solute
transport processes [Berkowitz, 2002]. The macroscopic
transport of contaminants in such systems is mainly carried
out in high-permeable, interconnected fractures, but most of
the capacity for storing a pollutant is provided by the low-
permeability porous matrix. Because of the much slower
transport in the matrix, steep concentration gradients may
occur between the fractures and the porous blocks, giving
rise to a local disequilibrium. The terms ‘‘macroscopic’’ and
‘‘local’’ or ‘‘microscopic’’ are used in this paper to define
different scales of interest. The macroscopic scale incorpo-
rates a large number of individual fractures and matrix
blocks, e.g., between a contaminant source and a monitor-
ing well. In contrast, the local (microscopic) scale is on the
order of single fractures and single matrix blocks. The local
disequilibrium situation with regard to the solute concen-
trations in fractures and matrix can lead to significant solute
transfer at the fracture/matrix interfaces. This local transfer

can strongly influence the macroscopic solute transport in a
fractured porous formation, and thus needs to be accounted
for in numerical models [Berkowitz, 2002].
[3] Generally, the numerical simulation of flow and

transport processes in fractured porous media can be per-
formed with discrete models or continuum models [e.g.,
Berkowitz, 2002; Neuman, 2005]. Discrete models describe
the spatial structure of the fracture-matrix system in great
detail on a microscopic level, and thus allow for a more
accurate simulation than continuum models. However, since
discrete models are limited in their applicability to field
problems, upscaling methods are commonly employed to
develop macroscopic models, simulating the flow and
solute transport behavior in sufficiently large computational
cells and assigning suitably averaged ‘‘effective’’ properties
to them. In fractured porous formations, where the local
disequilibrium between fractures and matrix cannot be
neglected, researchers have often applied so-called dual-
continuum models [Barenblatt et al., 1960]. Here, the
heterogeneous formation is separated into two superim-
posed, interacting media, one representing the fracture
system with high conductivity, the other representing the
porous rock matrix with high storage capacity. Because both
media are treated as different systems, the flow and trans-
port processes are described by two separate sets of equa-
tions coupled by transfer terms to account for the exchange
of mass at the common boundary.
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[4] Despite the simplification with regard to neglecting
microscopic transport processes, numerical modeling of
dual-continuum systems is still a complicated process. For
example, different types of dual-continuum approaches are
needed depending on the hydrologic characteristics of the
porous matrix. In the general form of a dual-continuum
model, the regional flow and transport processes take place
in both domains. In many formations, however, the regional
flow and transport processes in the matrix continuum can be
neglected because the hydraulic conductivity of the matrix
is almost negligible compared to that of the fracture con-
tinuum, such as in crystalline rocks or shale [Bodin et al.,
2004]. In such cases, the matrix continuum acts as a local
storage domain for the regional flow and transport in the
fracture continuum. The governing equation for the matrix
continuum can then be simplified by eliminating the mac-
roscopic flow and transport terms so that only the local fluid
flow or solute exchange with the fracture continuum needs
to be considered. In the first general form of a dual-
continuum model, we use the term ‘‘dual-permeability’’
(or mobile-mobile) model; the latter case is referred to as
a ‘‘dual-porosity’’ (or mobile-immobile) model [Simunek et
al., 2003]. Note that in a dual-porosity model, the local fluid
flow between fracture and matrix continua may be neglected,
e.g., when the flow field is steady state as assumed in this
paper (i.e., no local pressure gradient between fractures and
matrix) or when the matrix permeability is sufficiently small.
Matrix diffusion is then the only relevant solute transfer
process at the fracture-matrix interfaces.
[5] A variety of dual-porosity (mobile-immobile)

approaches have been described in the literature, most of
which with a focus on solute transport in fractured porous
media. Respective models have been developed with simple
first-order transfer terms [e.g., Huyakorn et al., 1983a;
Birkholzer and Rouve, 1994] or more complex higher-order
approaches, where local-scale detailed descriptions of dif-
fusive transport are employed in the immobile domain [e.g.,
Bibby, 1981; Huyakorn et al., 1983b, 1983c; Dykhuizen,
1990; Zimmerman et al., 1990, 1993; Birkholzer and Rouve,
1994]. Note that variations of dual-porosity approaches
have also been used to study solute-transport problems in
heterogeneous porous media bimodal permeability struc-
tures [e.g., Roth and Jury, 1993; Haggerty and Gorelick,
1995; Feehley et al., 2000; Flach et al., 2004].
[6] Macroscopic modeling of solute transport in dual-

permeability (mobile-mobile) systems is conceptually more
challenging than in dual-porosity (mobile-immobile) sys-
tems. First, the macroscopic transport processes need to
be solved for in both continua, which requires determination
of hydrologic properties separately for the fractured and
the porous domain [e.g., Teutsch, 1990; Gerke and van
Genuchten, 1993a]. Furthermore, the solute-transfer term
needs to take into account not only diffusive transport, but
also the additional effects of advection and dispersion.
Figure 1 schematically illustrates the advective mass ex-
change between fractures and porous matrix, as solutes
migrate within matrix pores (driven by a regional gradient)
and encounter flow in transverse fractures. Birkholzer and
Rouve [1994] proposed a dual-permeability approach with a
specific solute transfer term for such advective-dispersive
mixing processes. In this approach, a first-order exchange
term is determined, based on the macroscopic flow in the

matrix continuum and the geometric characteristics of
the fracture network. For dual-permeability modeling of
heterogeneous soils with high- and low-permeability
regions, Ahmadi et al. [1998], Cherblanc et al. [2003],
and Cherblanc et al. [2007] developed a volume averaging
technique that allows definition of first-order transfer terms
for diffusive, dispersive, and advective processes.
[7] As is apparent from the above discussion, dual-

continuum models of various types are available for simu-
lating solute transport in fractured porous media. However,
while dual-porosity models have quite often been applied to
field problems, dual-permeability applications have been
less frequent. One of the crucial problems encountered
when using dual-permeability models is the determination
of the large-scale effective properties, which include the
macroscopic flow and transport properties of the two
domains, as well as the properties determining solute
transfer between the two domains. This is not a trivial task.
For example, while a priori estimates of solute transfer
coefficients have been proposed for idealized subsurface
geometries ([e.g., Dykhuizen, 1990; Zimmerman et al.,
1990, 1993; Gerke and van Genuchten, 1993b; Gwo et
al., 1998] (for diffusive matrix transport); [Birkholzer and
Rouve, 1994] (for advective matrix transport)), they are
generally derived from calibration to field measurements.
Furthermore, the a priori decision about the appropriate
model to be used in a specific field situation, dual-porosity
or dual-permeability, can be difficult, depending on the time
and length scale of interest as well as the domain properties.
[8] In this paper, we evaluate the applicability of the

Continuous Time Random Walk (CTRW) theory for mod-
eling solute transport in fractured porous formations, as an
alternative to the traditional dual-continuum approach. The
CTRW theory has been developed to explain and model
anomalous, i.e., non-Fickian, transport in heterogeneous
physical systems [Scher and Lax, 1973]. Any deviation from
perfect homogeneity induces retardation and/or acceleration
of the solute, which cannot be represented by models based
on the classical hypothesis of homogeneous transport.
CTRW is an effective upscaled method that treats unresolved
(small-scale) heterogeneities stochastically and resolved
(large-scale) heterogeneities deterministically. CTRW has
found many useful applications in hydrogeological prob-
lems, including transport of tracers in porous media [Bijeljic
and Blunt, 2006], fracture networks [Berkowitz and Scher,
1995; Noetinger et al., 2001a, 2001b; Landereau et al.,
2001], sandstones, sand columns, unsaturated soils [Cortis
and Berkowitz, 2004], karstic systems [Anwar et al., 2008],
the hyporheic zone [Boano et al., 2007], transient flow in
highly heterogeneous permeable systems [Cortis and
Knudby, 2006], flow of emulsions in porous media [Cortis
and Ghezzehei, 2007], heat transfer in porous media
[Emmanuel and Berkowitz, 2007], and transport of biocol-
loids [Cortis et al., 2006].
[9] Dentz and Berkowitz [2003] demonstrated that the

CTRW method is formally equivalent to the linear multirate
mass transfer (MRMT) concept [e.g., Haggerty and Gorelick,
1995]. The dual-porosity approach is essentially a MRMT
model with a specific mass transfer model accounting for
heterogeneity in the solute exchange between mobile and
immobile regions. Our study aims at demonstrating that
the CTRW framework not only can substitute for dual-
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continuum approaches, but is generally applicable to frac-
tured porous formations over a wide range of matrix per-
meabilities. We do this by first conducting numerical tracer
experiments in discrete fracture-matrix systems [Berkowitz et
al., 1988; Birkholzer et al., 1993a, 1993b; Birkholzer and
Rouve, 1994; Rubin et al., 1996]. These simulations are
assumed to represent the ‘‘correct’’ system behavior. In a
second step, the results of the discrete simulations are
compared with the results from a nonparametric best fit
solution of the CTRW method [Cortis, 2007].

2. Discrete Numerical Experiments

2.1. Methodology

[10] Numerical tracer experiments are conducted using a
discrete representation of individual fractures and matrix
blocks, respectively. Because the flow and transport pro-
cesses are simulated in great detail on a microscopic
(‘‘local’’) scale, we may assume that the discrete simulation
results faithfully represent the transport corresponding to a
given set of hydrologic properties, so that the results
obtained using the CTRW method can be compared to these
‘‘correct’’ results.
[11] Since our main interest here is phenomena related to

fracture/matrix interaction and their impact on macroscopic
solute transport, it is reasonable to restrict the discrete
simulations to fractured formations with regular geometry
and uniform properties. The randomness and heterogeneity
of natural fracture networks would (1) create difficulties in
interpreting the simulation results with regard to the purpose
of our study, and (2) involve the difficult task of assigning
effective continuum parameters. Issues of computational
efficiency are to be considered as well, since the discrete
simulation results need to be compared to continuum results
on a sufficiently large scale.
[12] Figure 2 illustrates the setup for the numerical

experiments. An idealized formation is considered, with

two orthogonal sets of parallel equidistant fractures embed-
ded in porous permeable matrix blocks [Berkowitz et al.,
1988; Birkholzer and Rouve, 1994; Lagendijk, 2005]. A
constant (steady state) hydraulic gradient of 0.01 in the
positive x-direction is imposed by prescribing appropriate
hydraulic head boundary conditions at the inflow and
outflow cross sections of the model area. On the local scale,
flow in the matrix follows the direction of the gradient,
whereas flow in the fractures follows the fracture axis. On
the macroscopic scale, however, both types of flow follow
the positive x-direction, owing to the symmetry of the
fracture network. We simulate the migration of an ideal
tracer disposed uniformly along the inflow cross section,
given by a relative concentration value of one imposed at
the inflow boundary of the model area. The solute migrates
through the model area in both the fractures and the porous
permeable blocks; however, the transport in the fractures is
several orders of magnitude faster. Initially, the model area
is not contaminated.
[13] Although the conceptual setup is highly idealized, it

is consistent with the requirements needed for the present
study. First, it represents the tortuous flow paths through a
natural fracture network, providing a large interface for
mixing between the fractures and the porous blocks.
Second, the flow and transport processes in the domain
are symmetrical to the x axis, without any transverse
dispersion stemming from the randomness and heterogeneity
of the fracture network. It is therefore possible to use the
system’s symmetry and simulate only the long, thin subdomain
depicted in the bottom of Figure 2, with the upper and
lower boundaries representing no-flow boundaries. As
indicated in the figure, the term ‘‘sector’’ refers to part of
the model domain extending between two adjacent fracture
intersections. We consider model domains consisting of a
hundred, 0.5 m long, sectors, so that the total length of the

Figure 1. Schematic showing the mixing between fracture
and matrix flow as a result of convective transport in the
matrix.

Figure 2. Discrete representation in idealized fracture
network. Flow and transport is from left to right, with a
concentration boundary condition on the left side. The total
domain is 100 sectors long.
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model domain is 50 m in the x–direction, and 0.5 m in the
y–direction.
[14] The discrete simulation runs were performed with the

standard GALERKIN-Finite element-Code STRAFE6 using
a Crank-Nicholson time weighting scheme [Lagendijk, 2005].
Because of the heterogeneity of the formation, a refined
discretization in space and time was needed to meet the
Peclet and Courant criteria. Triangle elements were used for
the porous matrix and one-dimensional line-elements for the
fracture representation (see example for two sectors in Figure
2, bottom). A total number of with 1,000 line elements and
20,000 triangles was utilized, and simulation runs comprised
up to 30,000 time steps.
[15] Tables 1 and 2 summarize the geometrical and

hydrological properties chosen for the discrete simulations.
These properties are similar to those used in the discrete
numerical experiments described by Birkholzer and Rouve
[1994] and Lagendijk [2005]. The majority of them are kept
constant in our study (Table 1), except for the hydraulic
conductivity in the matrix, which is varied in four sensitiv-
ity cases (Table 2). We expect matrix conductivity to be the

most important parameter defining (1) whether the fractured
porous formation is a mobile-immobile or a mobile-mobile
system, and (2) whether the solute exchange between
fractures and matrix is dominated by diffusive or advective
processes. All values chosen represent reasonable parame-
ters mentioned in the literature as typical for actual field
situations. Notice that the relevant fracture properties in
Table 1 are given for single fractures, as represented in the
discrete modeling exercise, but have also been converted
into fracture continuum parameters, as required in macro-
scopic continuum approaches (fracture continuum conduc-
tivity and fracture continuum porosity).
[16] Table 2 discusses the basic features of the four

sensitivity cases. In Case 1, we consider a small hydraulic
conductivity in the matrix of 8.3� 10�6 m/d; i.e., the porous
matrix is essentially impermeable. Cases 2 and 3 denote
intermediate cases with conductivities of 2.0� 10�3 m/d and
8.3 � 10�3 m/d, respectively, while Case 4 features a
relatively high matrix conductivity of 9.94 � 10�2 m/d.
Notice the strong internal heterogeneity reflected in the ratios
of fracture to matrix continuum conductivity and transport
velocity. With respect to conductivity, these ratios range from
12,000 (Case 1) to 1 (Case 4); i.e., in the latter case, the same
magnitude of flow occurs in the two continua.With respect to
transport velocity, these ratios range from almost infinite
(Case 1) to 250 (Case 4); i.e., in all cases, the transport
velocity in single fractures is much higher than the transport
velocity in the matrix. As discussed by Birkholzer and Rouve
[1994], the internal heterogeneity causes a solute-transport
behavior in which the fast flow and transport in the fractures
is affected by more or less intense solute exchange with the
matrix. In the first case, with near-zero matrix permeability,
molecular diffusion is the only transport process causing the
transfer of solutes between the fractures and the matrix
blocks. In the other cases, with increasing matrix conductiv-
ity, more and more solute mixing occurs between fractures
and the matrix, as a result of advective flow in the matrix,
which has a sizable impact on overall transport behavior (see
section 2.2).

2.2. Simulation Results

[17] We shall first discuss simulation results on a local
scale—i.e., on the scale of single fractures and matrix
blocks—to evaluate the basic phenomena of solute transport
in fracture-matrix systems. In Figure 3, we present the
solute isoconcentration contours for the discrete matrix
blocks located in Sectors 3 and 4 of the model area. These
sectors are close enough to the contaminant source to
feature a fast response, and yet far enough away from it

Table 1. Geometry and Properties Chosen for Discrete Simulation

Parameter Value Unit

Fractures
Fracture spacing, B 0.707 m
Angle between fractures and x – Direction, q 45 �
Aperture, a 10�4 m
Hydraulic conductivity of single fracture,a Ksi

F 703 m/d
Continuum conductivity in x – Direction,b KF 9.94 � 10�2 m/d
Equivalent continuum porosity,c nF 2.83 � 10�4 -
Longitudinal dispersivity along single fracture, al

F 0.01 m
Effective diffusion in single
fracture coefficient, Dmo

F
10�4 m2/d

Matrixd

Porosity, nM 0.05 -
Hydraulic conductivity, KM case dependent m/d
Longitudinal dispersivity, al

M 0.01 m
Transverse dispersivity, at

M 0.001 m
Effective diffusion coefficient,e Dmo

M 2.0 � 10�5 m2/d
Size of matrix blocks, B � B 0.707 � 0.707 m2

Other
Hydraulic gradient in x – Direction, J 0.01 -
Sector length, L 0.5 m

aCalculated from parallel plate assumption as follows: Ks
F = g(2b)2/12n.

bCalculated from geometry considerations as follows:KF =Ks
F cos q/(B sin q).

cCalculated from geometry considerations as follows: nF = a/(B sin q cos q).
dProperties are given for unit bulk volume of the rock matrix.
eIncludes effect of tortuosity, assumed to be 0.2.

Table 2. Sensitivity Cases

Case 1 Case 2 Case 3 Case 4

Formation type e.g., crystalline rock, shale e.g., porous sandstone, limestone
Matrix hydraulic conductivity 8.3 � 10�6 m/d 2 � 10�3 m/d 8.3 � 10�3 m/d 9.94 � 10�2 m/d
Ratio fracture to matrix
continuum conductivity

�12,000 50 12 1

Ratio fracture to matrix
transport velocitya

�3 � 106 m/d �12,400 �3,000 250

Type of fracture-matrix interactionb almost purely diffusive mostly diffusion diffusion and advection mostly advection, strong mixing
Breakthrough characteristicsb rapid response, long tail Between Cases 1 and 4 typical ADEc without tailing

aFracture transport velocity is measured along fracture axis.
bBased on Birkholzer and Rouve [1994].
cADE: Advection-Dispersion Equation.
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to be essentially unaffected by the inlet boundary condition.
We then discuss the macroscopic transport in the discrete
fracture-matrix systems using breakthrough curves (BTC,
see Figure 4) obtained at selected locations along the model
domain (i.e., at 1 m, 5 m, 15 m, and 45 m from the inflow
boundary, which corresponds to 2, 10, 30, and 90 model
sectors). The BTCs at these locations will be used to
evaluate the performance of the CTRW method.
[18] Figure 3a depicts the discrete simulation results in

Sectors 3 and 4 for Case 1, which has an almost imperme-
able porous matrix. We notice a strong contaminant buildup
near the fractures, demonstrating that solutes migrate very
fast in the fracture network. During this fast advective
transport, a small fraction of the solute migrates from the
fractures into the porous matrix. This process is slow: at
100 days, the major fraction of the matrix blocks is not
yet contaminated. The BTCs for Case 1 in Figure 4a exhibit
the typical transport behavior of dual-porosity (mobile-
immobile) media. The tracer breakthrough values initially
increase very quickly, because of the large velocities in the
fracture network. The smaller the distance between obser-
vation point and tracer inlet, the more significant the initial
concentration buildup. Long tailing is observed after the
initial buildup, a result of the slow diffusive transfer
between the fractures and the matrix pore system. The
dashed BTC indicates the local concentration differences
between fractures and matrix for a migration distance of
30 sectors. It is obvious that the formation would need a

very long time to equilibrate: significant local concentration
differences can still be observed at 3,000 days.
[19] Concentration contours for Cases 2 and 3 are pre-

sented in Figures 3b and 3c, respectively, after 100 days of
solute disposal. While the transport velocity in the fractures
is still orders of magnitude higher than in the matrix
(Table 2), the impact of increasing matrix permeability shows
in the microscopic transport behavior. The asymmetrical
concentration contours are a result of advective-dispersive
transport in the matrix, acting in the positive x-direction.
The diffusive transfer from the fractures into the matrix is
complemented by this advective-dispersive component;
thus, the faster concentration buildup in the matrix compared
to Case 1. The effect of enhanced mixing between fractures
and matrix also shows in the BTCs in Figures 4b and 4c,
where, compared to Case 1, equilibrium conditions are
reached earlier and less tailing can be observed.
[20] Case 4 presented in Figures 3d and 4d features a

conductivity ratio of one between the fracture and matrix
continua; i.e., 50% of the macroscopic flow is performed in
the fractures and 50% in the matrix. The advective-disper-
sive mixing between the fracture and the matrix flow is so
intense that the local concentrations equilibrate very fast,
despite the still significant velocity-difference ratio of
250 between the two media. We present concentration
contours at 20 days because the matrix blocks in Sectors 3
and 4 are completely contaminated after less than 100 days.
(With a transport velocity of about 0.02 m/d in the matrix, a
particle needs about 50 days to migrate along the two

Figure 3. Matrix concentrations from discrete simulations displayed in Sectors 3 and 4 of the model
domain.
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sectors, as shown in Figure 3d.) The breakthrough curves in
Figure 4d resemble those of advective-dispersive transport
in a homogeneous medium; it seems that an almost contin-
uous front is moving through the formation.

3. CTRW Modeling of the Fractured-Rock
Transport Problem

3.1. Physical Motivation and Model Formulation

[21] The CTRW framework is a generalization of the
classical Random Walk (RW) method so often used in the
hydrogeological literature to solve the advection-dispersion
equation (ADE) of a passive tracer in a porous domain. In
the RW approach, tracer density is obtained by following
the evolution of an ensemble of random walkers taking
(uncorrelated) jumps of constant length at random (uniform)
direction in the unit time. CTRW generalizes this physical
picture by allowing the walker to jump according to a
probabilistic distribution function (pdf), Y(x, t), of the
length of a jump, x, and the retention time, t, at a given
location, while keeping a uniform random distribution for
the jump direction. Assuming that the probability of the
length of the jumps and the retention time probability are
statistically independent, we write Y(x, t) = p(x)y(Y(t),
where p(x) is the probabilistic distribution of the particle

jump lengths, and y(t) is the retention times pdf. A detailed
analysis of this uncoupling assumption can be found by
Berkowitz et al. [2006]. When both the p(x) and y(t) pdfs
have finite first and second moments, (e.g., uniform, decay-
ing exponential), the CTRW and RW physical pictures can
be considered to be equivalent. If, however, either of the
two has infinite variance (e.g., Cauchy, power law) than the
CTRW yields qualitatively different physical pictures, and
the random paths are referred to as Levy walks and Levy
flights, for the cases of infinite variance of y(t) and p(x),
respectively. By taking an ensemble average over all the
possible realizations of the unresolved heterogeneity, it is
possible to map the set of small-scale, unresolved hetero-
geneities onto a probabilistic distribution of retention times,
y(t), that contains all the information necessary to describe
transport in a given heterogeneous media. The p(x) pdf is
assumed to have finite variance; from a physical point of
view, this means that the tracer is allowed to take only
relatively short jumps—consistent with the geological pic-
ture we have of a fractured porous matrix.
[22] A comprehensive discussion of the CTRW and its

relation to other upscaling methods can be found in the
recent review by Berkowitz et al. [2006]. We refer to this
review for the theoretical development of the CTRW, while
details regarding the numerical implementation can be

Figure 4. Breakthrough curves for (a) Case 1, (b) Case 2, (c) Case 3, and (d) Case 4, measured at
different locations along the model domain.
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found by Cortis and Berkowitz [2005]. In this work, we use,
as the starting point of our analysis, the CTRW partial
differential equation (PDE) for the transport of a passive
tracer. In its nondimensional form, the CTRW PDE that
governs the spatiotemporal evolution of the density of a
passive tracer, c(x,t), is [Dentz et al., 2004]:

u~c x; uð Þ � c0ðxÞ ¼ � ~M uð Þ@x ~c x; uð Þ � a@x~c x; uð Þ½ � ð1Þ

where the tilde indicates the Laplace transform (LT)
~f uð Þ ¼ L f tð Þ½ � ¼

R1

0

f tð Þ exp �utð Þdt, u is the Laplace

variable, c0 (x) is the initial condition, a is the local
dispersivity, and ~M (u) is a memory function that takes
into account the nature of the heterogeneity and is
related to the retention times pdf, y(u), by ~M (u) = u
~yðuÞ

1�~yðuÞ. In equation (1), length and times have been made

nondimensional, such that the nondimensional transport
velocity is equal to unity. Equation (1) represents the
time convolution of the memory function M(t) with the
classical advection-dispersion operator, and for this
reason this class of models is referred to as nonlocal in
time. Equation (1) reduces to the classical ADE when
~M (u) = 1; i.e., M(t) = d(t), which implies an
exponentially fast decay of the retention times pdf,
~y(u) = 1

1þu
, i.e., y(t) = exp(�t). It can also be shown

that fractional derivative models are special cases of the
general CTRW formulation [Berkowitz et al., 2006].
[23] The CTRW interpretation of the dispersivity a is

different from the classical advection-dispersion equation
(ADE). In the ADE, a represents a typical characteristic
length of the small features of the systems, e.g., the pore-
throat size. This interpretation has been a problematic one
from its inception, and has led to a vast literature on the so-

called macroscopic dispersion tensor, i.e., the attempt of
explaining the scale-dependent spreading of observed tracer
BTCs by means of an evolving characteristic length. In-
stead, in the CTRW approach, a is defined as the ratio

a ¼ 1

2

R
pðxÞx2dx

R
pðxÞxdx

: ð2Þ

[24] The y(t) pdf completely describes, in a probabilistic
sense, the entire range of interactions that a solute molecule
experiences in its interactions with the fluid flow field.
Heterogeneities in the flow field have a strong influence on
the retention-time probability of staying in a given place for a
given interval of time, as is the case for high retention times in
stagnation zones (such as those in low-permeability matrix
blocks) and short retention times for fast flow paths (such as
those in interconnected fractures). In other words, the CTRW
approach smoothes out the unresolved heterogeneities and
maps them onto the y(t) retention times pdf. This mapping
has the effect of representing the overall effect of the hetero-
geneities through a time-memory convolution, which reflects
the history of interactions within the system.
[25] As discussed by Dentz et al. [2004], an algebraically

decaying y(t) � t�1�b can explain a power law like type of
decay for the tail of a breakthrough curve. This type of long
tailing is illustrated in Figure 5, where we plotted the
solution of the ADE equation for a dimensionless velocity
of v = 1 and a dimensionless dispersivity a = 0.005 (solid
blue line), and the CTRW solution corresponding to the
~y(u) = 1

1þub
, with b = 0.8, and a = 0.005 (solid red line). We

recall that the ADE solution corresponds to ~y(u) = 1
1þu

. The
long tailing in the CTRW solution is caused by the convo-
lution of the memory function with the ADE transport
operator (solid blue line). We note that the explicit solution
of the CTRW equation is more than just a simple convolu-
tion of the memory function ~M (u) with the solution for the
ADE equation [see, e.g., Dentz et al., 2004, Appendix B].
Depending on the specific shape of y(t), the CTRW model
can reproduce the fast early time arrivals as well as the long
tailing typical of fractured systems, as illustrated in Figure 5.
[26] Typically, the CTRW PDE is solved by postulating a

simple functional form for y(t) and then fitting its model
parameters to the experimental data. A number of y(t)
models are described in detail by Berkowitz et al. [2006].
Despite the wide success in fitting many laboratory and
field data sets, however, such simple functional forms may
not be general enough to describe the entire range of
transport modes encountered in hydrogeological applica-
tions [Anwar et al., 2008]. Following this approach, we
have tried to fit the BTCs in Figure 4 with all the functional
forms described by Berkowitz et al. [2006], with no success.
Attempts to generalize these functional forms to conform to
the shape of these BTCs also failed. Thus a more general
and less restrictive method needs to be used in this case. For
this reason, in this work we apply a nonparametric inversion
algorithm (NPIA) first described by Cortis [2007].
[27] The NPIA is aimed at recovering the numerical

approximation of the whole spectrum of retention times
that govern transport directly from the experimental data,
without postulating a priori a functional form for y(t).
While the details of the NPIA can be found by Cortis
[2007], below we summarize the salient features of the

Figure 5. ADE solution (solid line) and CTRW solution
(dashed line), for the same value of the non-dimensional
dispersivity a = 0.005. For the CTRW solution, ~y(u) = 1

1þub

with b = 0.8.
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method. In the NPIA, the y(t) is given through its numer-
ical representation in the time-interval interest depending on
the evolution of the breakthrough. This representation is
obtained through the numerical inversion of the numerical
approximation of ~y(u), determined via a nonlinear numer-
ical inversion of the best fit of the CTRW PDE solution to
the numerical Laplace-transformed data. The method is
robust enough to reproduce all the known functional forms
for y(t), and yet flexible enough to represent more com-
plex-looking BTCs. One of the most notable results of the
application of the nonparametric approach to nonlocal
methods is that any given unresolved heterogeneity can be
represented by a family of retention-time probability dis-
tributions, y(tja) of parameter a, where a is the local
dispersivity. In other words, any given set of breakthrough
curves taken at different sections, and/or concentration
profiles taken at different times, can be fit equally well by
different y(t), conditional to some reasonable value of a.
This means that the dispersivity a cannot be considered
either an intrinsic or a scale-dependent parameter of the
system. Importantly, as no a priori value of a can be given
or estimated from any type of macroscopic measurement, it
must be interpreted only as an ancillary parameter of the
retention-time probability distribution y(t), which fully
describes the transport. These considerations hold true not
only for systems exhibiting anomalous transport, but also
for normal transport, i.e., for the classical ADE Gaussian
type of transport [Cortis, 2007].

3.2. Application of the CTRW Method

[28] The first step in applying the CTRW model to the
BTCs (shown in Figure 4) is the definition of characteristic
(dimensional) transport velocity v0 and dispersivity a0 for
the different fracture-matrix systems studied in section 2.
[29] As discussed earlier, in our CTRW model, the

interaction between the fractures and the porous matrix is
fully taken into account via the introduction of the memory
function M(t) (hence the probabilistic distribution of reten-
tion times, y(t), which is convoluted with the classical
ADE transport kernel, i.e., v0@x[c(x, t) � a0@xc(x, t)]. We
thus need to define reasonable values for the relevant
parameters v0 and a0 of the classical ADE that represent
the local dispersion inside the porous matrix and along
single fractures, without accounting for their interaction.
[30] One logical approach is to define the characteristic

transport velocity of the composite system in Figure 2 using
the total flux through the fracture-matrix column (to calcu-
late the Darcy velocity) and the total porosity of the
fractured porous medium (to convert from Darcy to trans-
port velocity). In other words, we calculate the velocity v0

that represents a homogeneous column conducting the same
total flux and has the same pore space as the fracture-matrix
systems studied in Cases 1 through 4. Note that both these
quantities, total flux and porosity, can generally be mea-
sured or estimated in field situations. Similarly, the disper-
sivity a0 can be chosen such that it represents only local
dispersive effects in fractures and matrix blocks, and not the
effects stemming from the fracture-matrix interaction. The
exact value of a0 is not important because, as discussed
above, the application of the nonparametric inversion algo-
rithm implies that equally good fits of the CTRW equations
on the BTCs data can be obtained for different (reasonable)
values of the dispersivity [Cortis, 2007]. In this work, we

selected a value of a0 = 0.25 m, that, as we will see in the
discussion below, represent the characteristic dispersivity of
Case 4. Such value of a0 is considerably smaller than the
typical macrodispersivity estimates [Gelhar, 1993].
[31] We define dimensionless parameters as follows.

Length-based quantities such as horizontal distance or
dispersivity are normalized with the total length of the
model domain, L = 50 m. The four BTC locations shown
in Figure 4, at 2, 10, 30, and 90 sectors (1, 5, 15, 45 m), thus
correspond to nondimensional distances of x = [0.02, 0.1,
0.3, 0.9]. Nondimensional dispersivity is a = 0.005. The
characteristic transport velocity calculated above is normal-
ized to unity, and time in the breakthrough curves is
normalized such that a particle migrating with unit velocity
would arrive at the end of the column, x = 1, at nondimen-
sional time t = 1. We then select the BTC calculated at x =
0.1 as the reference BTC for the CTRW model: this will be
our ‘‘data.’’ In other words, the breakthrough results from
the discrete simulations for the cross section at 10 sectors
(Figure 4) represent the data set over which the nonpara-
metric inversion algorithm is fitted to. The NPIA yields the
y(tja) retention time pdf, conditional to the chosen value of
a. The y(tja) is then used to predict the BTCs at x =
0.02, x = 0.3, and x = 0.9. This procedure is conducted for
all parameter cases, by keeping the value of a unchanged.
[32] We recall that Case 1 represents the one bounding

case in which a very small flux is allowed to flow in the
porous matrix (low permeability). Cases 2, 3, and 4 have
increasing matrix-permeability values, with Case 4 the other
bounding case, in which an equal amount of flux is allowed
in the fractures and the porous matrix.
[33] The results of the fitting procedure to Cases 1

through 4 are reported in Figure 6. In the left panels of
Figure 6, we plotted as solid lines the simulated BTCs at the
four sections x = [0.02, 0.1, 0.3, 0.9] (as calculated by the
discrete numerical procedure), together with the best fits
obtained by means of our NPIA applied to the CTRW
model (circles). The ADE model a = 0.005 is also reported
for reference (dashed lines). In the right panel of Figure 6,
we plotted, in double logarithmic units as a solid line, the
best fit y(t) obtained with the NPIA on the BTC at x = 0.1
and as a reference the exponential function exp(�t), which
represents the ADE model limit.
[34] As we can see from Figure 6, the ADE model does a

good job at fitting the BTCs in Case 4 (for x = 0.1) and
predicting the BTC at the other sections. This can be seen also
from the best fit y(t) (solid line), which is very close to the
decaying exponential exp(�t) (dashed line), i.e., the ADE
limit. In other words, the observed ‘‘correct’’ BTC of the
fracture-matrix system can be represented without explicitly
accounting for unresolved heterogeneities. This is not too
surprising, considering the strong mixing between fracture
and matrix flow (Figure 3) and the typical symmetrical shape
of the breakthrough curve (Figure 4). In this case, however,
the CTRW model is slightly more precise than the ADE.
Notice that the good agreement between the ‘‘correct’’ BTC
and the ADE solution also supports the determination of the
characteristic transport velocity of the composite system.
[35] As the total flux in the system predominantly flows

in the fractures for the cases with small matrix permeability
(Cases 1 through 3), the ADE fails in predicting the BTCs,
whereas the CTRW model provides excellent fits (for x =
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Figure 6. Best fit results of the CTRW model. Cases 1–4, (top to bottom) represent systems with
increasing values of the porous matrix (see Table 2). In the left panel we compare the discrete numerical
computations (solid lines), with the CTRW model (circles) and the ADE model (dashed lines). The
breakthrough curves are calculated at four different sections, x = 0.02, 0.1, 0.3, and 0.9. In the right panel,
we plot the best fit probabilistic distribution of retention times, y(t) (solid lines), and for comparison the
decaying exponential exp(�t) (dashed lines), the classical ADE limit.
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0.1) and predictions (for x = [0.02, 0.3, 0.9]). (For the
section at x = 0.02, the CTRW model provides a correct
prediction only up to the time at which the reference BTC
used to derive the y(t) pdf (in our examples the BTC at x =
0.1) differs significantly from zero. In other words, because
of the inherent numerical instability of the numerical Lap-
lace inversion algorithms (i.e., the oscillating behavior), the
numerical approximation of y(t) is not accurate enough to
back-propagate the BTC for small enough times.) The
CTRW approach is capable of representing transport pro-
cesses for a wide range of fractured porous formations,
ranging from mobile-immobile systems with mostly diffu-
sive mixing (Figure 3a for Case 1) to mobile-mobile
systems with diffusive as well as advective-dispersive mix-
ing (Figures 3b and 3c for Cases 2 and 3).
[36] In each of these three cases, the best fit y(t) pdfs

consistently deviate from the decaying exponential, which
indicates the presence of a wider spectrum of characteristic
retention times in the fracture-matrix system. We can
observe the graph of the best fit y(t) (solid line) crossing
the graph of the decaying exponential (dashed line). Retention
times larger than exp(�t) are indications of faster tracer
arrivals, whereas smaller values indicate slower tracer arrivals.
This behavior can be understood by recalling the character-
istics of the fracture-matrix interaction as shown in Figure 3.
We also note that the best fit y(t) converges, for long times, to
a decaying exponential behavior, a clear indication of a
truncation time for the transport process [Dentz et al., 2004].
Consistent with this observation, the crossing time decreases
with the increase of the matrix permeability.
[37] It is also worth pointing out that the estimated y(t)

pdfs show a t�1/2 slope for Cases 1 through 3, which is
often observed in field conditions and interpreted as mac-
roscopic matrix diffusion. While Cases 1 and 2 are defi-
nitely diffusion dominated in the matrix, Case 3 exhibits
clearly the effect of advective transport through the matrix
blocks. It appears that diffusive and advective interaction
between fractures and matrix lead to the same slope in the
estimated y(t) pdfs. This suggests that the macroscopic
values of matrix diffusion determined in field conditions,
which are often larger than those observed in laboratory
conditions, may include contributions stemming from ad-
vective transport in the porous matrix. A interesting topic of
research would be a study of the relationship between the
transition cut-off time from a t�1/2 slope to a decaying
exponential behavior in the y(t), and its dependence on the
permeability characteristics of the fractures and the matrix.
[38] Note that the value for dispersivity a remains un-

changed for the four cases, so that the transport is com-
pletely defined by the y(tja) pdf. Furthermore, within each
individual case, a single value of a is used to describe the
BTCs for the four locations, whereas a macrodispersivity
approach would require a scale-dependent and much larger
value of a = a(x). Our sensitivity study indicates that the
quality of the CTRW fitting results does not depend on the
particular (small) value of a, in accordance with the results
of Cortis [2007] describing the existence of a family of
residence time pdfs parameterized in a. This confirms our
initial conjecture that small values of a can be thought of as
accounting for the small local dispersion and diffusion
phenomena happening in the individual fractures and matrix
blocks, whereas the fracture-matrix interaction can be

represented by a memory function related to the tracer
retention-times probabilistic distribution.

4. Conclusions

[39] We have presented a study of the tracer-transport
interaction in a composite hydrogeological system consisting
of interconnected fractures and porous permeable matrix
blocks. Four sensitivity cases, covering a wide range of matrix
permeability values, exhibited a macroscopic transport behav-
ior strongly dependent on the intrinsic heterogeneity of the
fractured rock (i.e., fractures versus matrix) and the character-
istics of local fracture-matrix interaction processes. Using
results from numerical experiments employing a discrete
(microscopic) representation of fractures and matrix, we
investigated the possibility of the Continuous Time Random
Walk (CTRW) framework for predicting the observed macro-
scopic transport processes in such composite media.
[40] Our results indicate that:
[41] (1) The CTRWoffers a valid and robust alternative to

classical approaches used for fractured porous media (such
as dual-continuum models), with a clear physical interpre-
tation and a parsimonious number of parameters;
[42] (2) The anomalous transport observed in the numer-

ical experiments can be fully characterized by the probabi-
listic distribution function (pdf) of retention times, y(t),
which stochastically describes the full range of interactions
between the fractures and porous matrix;
[43] (3) The y(t) pdf can be extracted by means of a

nonparametric inversion algorithm fitted on the observed
breakthrough data at a given location, which fully character-
izes the transport at all other locations;
[44] (4) The characteristic transport velocity used in the

CTRW approach can be calculated from the total composite
flux and the total composite porosity of the fractured formation;
[45] (5) The dispersivity a used in the CTRW is not scale-

dependent, such that one value of a can be used for all
sensitivity cases and locations. Moreover, the relatively
small value used for a represents the local dispersion in
single fractures or matrix blocks, but does not need to
account for the complex interaction between fractures and
matrix that leads to the anomalous macroscopic behavior.
As discussed above, the latter is fully characterized by the
pdf of retention times;
[46] (6) Anomalous early time arrivals can also be repre-

sented in the CTRW framework, and are characterized by
values of y(t) > exp(�t) for times smaller than some
crossover value t0, whereas the slow late-time arrivals are
characterized by values of y(t) < exp(�t).
[47] Future work will focus on CTRWapplications to more

disordered fracture-matrix systems, looking at the effects of
random fracture structures or evaluating the impact of mi-
croscopic heterogeneities within the fractures or the porous
matrix, hence requiring a local y(t) for these local structures.
We will also attempt to apply the CTRWmethods developed
here to field data from fractured porous media.
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